#### BŪNGE

#### Non PHO Solutions Tortilla Shortening Overview



## Agenda



| <b>Opening Remarks</b>                | Introduction:                                                       |
|---------------------------------------|---------------------------------------------------------------------|
| Lipid Chemistry (just a little)       | Basic chemistry important to understanding product characteristics, |
| Requirements for Fats in<br>Tortillas | Functional and Operational Needs for Fats used in Tortillas         |
| Non PHO Strategies                    | Non PHO Approach to regain functionality                            |
| Tortilla Frying                       | Industrial Processing; Functional Requirements                      |
|                                       |                                                                     |
|                                       |                                                                     |

# **Oil Chemistry**

- Chemical Structure of Fats
  - Triglycerides (aka Triacylglycerols or TAGs)
  - Fatty Acids
- Impact of Structure on Melting Properties
  - Saturation
  - Chain Length
  - Chemical Structure
- Impact of Structure on Oxidative Stability
  - Saturation
  - Chain Length
- Interesterification
  - Functional Modification
  - Without Partial Hydrogenation OR Trans Fats



## **Chemical Structure**

**Triglyceride Molecule (TAG)** 

**Glycerol + 3 Fatty Acids** 







## **Chemical Structure**

| Nutritio                                                                                     | (49g)                                          | Fac                    | cts             |
|----------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|-----------------|
| Servings per Package                                                                         | 10                                             |                        |                 |
| Amount per Serving                                                                           |                                                |                        |                 |
| Calories 140 Ca                                                                              | lories fro                                     | om Fat                 | 30              |
|                                                                                              |                                                | % Daily                | Value           |
| Total Fat 3.5g                                                                               |                                                | 70                     | 5%              |
| Saturated Fat 1.5                                                                            | ig                                             |                        | 8%              |
| Trans Fat 0g                                                                                 |                                                |                        |                 |
| Polyunsaturated Fa                                                                           | at Og                                          |                        |                 |
| Monounsaturated F                                                                            | Fat 1g                                         | 9                      |                 |
| Cholesterol Omg                                                                              |                                                |                        | 0%              |
| Sodium 420mg                                                                                 |                                                |                        | 18%             |
| Total Carbohydrate                                                                           | 24g                                            |                        | 8%              |
| Dietary Fiber 1g                                                                             |                                                |                        | 4%              |
| Sugars 1g                                                                                    |                                                |                        |                 |
| Protein 4g                                                                                   |                                                |                        |                 |
| Vitamin A 0%                                                                                 | * Vita                                         | min C 09               | %               |
| Calcium 8%                                                                                   | * Iron                                         | 8%                     |                 |
| * Percent Daily Values and<br>diet. Your daily values ma<br>depending on your calorie<br>Cal | e based on<br>y be highe<br>needs:<br>ories: 2 | a 2,000 ca<br>rorlower | alorie<br>2.500 |
| Total Fat Less                                                                               | than 65g                                       | 80                     | a               |
| Sat Fat Less                                                                                 | than 20g                                       | 25                     | g               |
| Cholesterol Less                                                                             | than 300                                       | mg 30                  | Omg             |
| Sodium Less                                                                                  | than 2,4                                       | 00mg 2,4               | 400mg           |
| Total Carbohydrate<br>Dietary Fiber                                                          | 300<br>25g                                     | g 3/<br>30             | 6g<br>g         |
| Calories per gram:<br>Fat 9 * Carbohydr                                                      | ate 4 *                                        | Protein                | 4               |



#### Saturated, Monounsaturated and Polyunsaturated

- Saturated Fatty Acid are made up of Carbons which are bonded to other atoms at all 4 sites.
  - Meat Fats, Palm, Butter, PKO and Coconut Oils are high in saturated fats
- Monounsaturated Fatty Acids have a single unsaturated site often called a "double bond". A fatty acid with only one double bond is called a Monounsaturated fatty acid
  - Olive, Canola and Sunflower Oils are high in monounsaturated fats
- Polyunsaturated Fatty acids have two or more double bonds along the carbon chain
  - Corn, Soy and Sunflower Oils are high in polyunsaturated fats







### Impact of Fatty Acid Length on Melt Point

The longer the Fatty Acid, the higher the Melt Point

| C18:0 | Stearic Acid  | 158 F |
|-------|---------------|-------|
| C16:0 | Palmitic Acid | 145 F |
| C14:0 | Myristic Acid | 129 F |
| C12:0 | Lauric Acid   | 112 F |





## Impact of Saturation on the Melt Point of Fatty Acids

| C18:0 | Stearic Acid         | 158 F |
|-------|----------------------|-------|
| C18:1 | Oleic Acid (cis)     | 59 F  |
| C18:2 | Linoleic Acid (cis)  | 23 F  |
| C18:3 | Linolenic Acid (cis) | 10 F  |

#### The more Double Bonds the Lower the Melt Point of the Fatty Acid



Impact of Double Bonds on a Fatty Acid's Resistance to Oxidation (Rancidity)

### **Relative Rates of Oxidation**

| <b>Oils are/were hydrogenated to improve stability</b> |                |                  |  |
|--------------------------------------------------------|----------------|------------------|--|
| C18:3                                                  | Linolenic Acid | 250X less stable |  |
| C18:2                                                  | Linoleic Acid  | 120X less stable |  |
| C18:1                                                  | Oleic Acid     | 10X less stable  |  |
| C18:0                                                  | Stearic Acid   | 1                |  |

The more Double Bonds, the Less Resistant to Oxidation



#### **Summary: Effects of Saturation and Unsaturation**

More Saturation

-Higher Melting Point-More stable against Oxidation

More Unsaturation

-Lower Melting Point-More Likely to react with Oxygen to cause rancidity



#### **Functional Modification Interesterification:**

#### Method of interesterification:

**Chemical** – It is the process by which fatty acids are randomly distributed across the glycerol backbone of the triacylglycerol.

**Enzymatic** – This process rearranges the fatty acids (can be position specific) on the glycerol backbone of the triacylglycerol.



### **Interesterification Process Comparison**





## Why Enzyme Interesterification?

- Interesterification allows for the exchange and rearrangement of fatty acids on the glycerol backbone to yield functional triglycerides. Enables the concentration of specific functional triglycerides.
- Provides a more uniform and consistent melting event similar to traditional shortening.
- Considered a *Natural or Green Process*
- Enzymes facilitate many natural biological processes required to sustain life
- The resulting triglycerides are found naturally in traditional oils.



### **Functional Modification: Interesterification**

#### Process:

- Liquid Soy oil and Fully Hydrogenated Soy oil are blended to specific ratio. Both components have been refined and bleached but not deodorized.
- Blended oil is treated with silica to remove minerals and metals which might interfere with enzyme activity.
- After silica treatment, the blend is pumped through a series of enzyme beds.



#### Interesterification vs. Physical Blending In very basic terms





#### Effect of Interesterificaton on Solid Fat Content





## **Enzyme Interesterification of Soy**

- Benefits
  - Functional, Low trans shortening based upon domestic soybean oil.
  - Sustainable supply chain.
  - Broad plastic range
  - The EIE reaction is a "Green" process that is much more environmentally and resource friendly process vs CIE





## What makes EIE a Good Solution Today?

- Food Industry was pressured to move away form trans fats quickly
- Palm oil became the interim solution
  - Taste, formulation and processing challenges remain
  - Increased levels of saturated fat to replace trans fat
  - Supply Chain and Risk Management concerns
  - Sustainability concerns
- Food processors still looking for longer term solutions
- Improvements in enzyme performance and stability have made the process economically viable for mainstream shortenings.





- Often dictated by marketing requirements
  - Desire to make specific label claims
  - Desire for "clean" label
  - Desire for "green" or "sustainable" ingredients



- Functional Requirements:
- Soft, smooth texture
  - Must have good solid content and moderate Melt Point
    - -Too much liquid oil makes a sticky dough
  - Good mixing characteristics
    - Must mix out with dry ingredients to smear onto flour and coat ingredients properly
    - -Must not leave lumps of shortening in the dough
      - Can cause holes in the finished tortilla



- Good Flavor and Stability
  - Resistant to oxidation
  - Good Flavor profile
    - -Clean and complimentary to the baked product
    - -Good mouthfeel (not waxy or oily)



### Often contain emulsifier

- Helps with dough processing
  - -Makes doughs less sticky on rollers and belts
- Improves packaged product stability
  - -Extends shelflife by keeping the dough soft
  - Prevents the individual tortillas in a stacked package from sticking together.



### Strategies for Zero Trans and Non PHO

- A certain level of Saturates is required
  - Give proper texture
  - Mouthfeel
  - Dough processing
- Saturates can come from:
  - Natural Saturates (Palm, Palm Fractions, PKO)
  - Fully Hyrdogenated Saturates
    - -Full Hydro Soy or Cottonseed



### Strategies for Zero Trans and Non PHO

- Blends of Palm oil with Liquid oil and Fully Hydrogenated components
- Blends of Palm with Liquid and Fully Hydrogenated components

Interesterification of liquid oils with Fully Hydrogenated components or with Palm

## **Application: Tortilla Chip Frying**

**Chemistry of Frying** 

**Industrial Frying Characteristics** 

**Frying Oil Requirements** 

**Oil Types - Options** 



- Frying Is:
  - Heat transfer using Oil as the Heat Transfer Fluid
  - Oil is Edible HTF!



Reactions that happen when Frying:

- Browning (carmelization)
- Gelatinization (starches)
- Maillard Reaction (proteins / sugars)
  - All these processes help to develop desirable flavors and colors in the food



The Most Important Effect When Frying:

- Moisture Exchange
  - Food gives up water (steam)
  - Takes on oil (ABSORPTION)
  - The Fat becomes a Major Part of the Food.
  - Shelf Life then becomes dependent on the quality of the frying oil



Changes in the Oil when Frying:

#### Oxidation:

- Forms hydroperoxides
  - Which further oxidize to form aldehydes
    - Forms ketones
      - » Etc, etc
- Some of which are not totally bad!
  - A small amount of these develop a desirable "fried" flavor



#### Changes in the Oil when Frying:

#### Hydrolysis:

- Fatty acids are split from the glycerin
  - Or may be split at a double bond to give a small radical
  - Free Fatty Acids have a low molecular weight
    - They are the primary source of smoke when oil smokes.
- A TAG Losing a Fatty Acid then becomes:
  - A Diglyceride or a Monoglyceride (or a near analog)
    - These act like EMULSIFIERS in the frying fat
      - » Cause increased absorption onto the food
      - » Help hold water in the oil and further promote hydrolysis

## Industrial

- High turnover, high food volumes
- Very consistent volume of one or two food types
- Often require long shelf life of finished product
  - Means the oil quality must be very good in the product
- Requires care in process control
  - Temperatures
  - Filtration
  - TURNOVER must be managed carefully



## Frying Oil Requirements

- High Oxidative Stability
- High Smoke Point (high Molecular Wt oil)
- Often require long shelf life of finished product
  - Means the oil quality must be very good in the product
- Highly automated
- Specific foods require solid frying shortenings

## Tortilla Frying Options

- High Stability / High Oleic liquid oils
- Blends of Palm + High Stability oils
- Corn and Cottonseed oils
- Interesterified Soy shortening



## Tortilla Frying Options



#### **QUESTIONS??**



