Uses of Liquid Preservatives for Clean Label Tortillas

Gokila Thangavel, Ph.D.
Senior Scientist
Kemin Food Technologies – North America

OVERVIEW

- Introduction
- Microbes of concern
- Preservatives
- Mode of action
- Efficacy studies

COMPANY OVERVIEW

- Founded in 1961 by R.W. and Mary Nelson
- Family owned and operated
- More than 500 patents and applications
- Annual revenue exceeds USD \$1 Billion
- Transforming a billion lives every day

Our

We strive to sustainably transform the quality of life every day for 80 percent of the world with our products and services.

Consumer Purchasing Trends

Three main trends impact consumer behaviors;

- 1. Cost-conscious choices
- 2. Holistic wellness
- 3. Values-based purchasing

MICROBIAL SPOILAGE

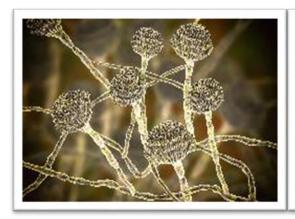
MICROBIAL SPOILAGE

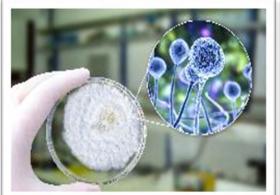
- Baked goods are generally at a lower risk of causing food poisoning as compared to other food.
- However, spoilage in baked goods is a major concern.
- Estimated bakery product loss is 5% in US & 1 5% in Europe
- Spoilage incurs huge economic losses
- It also affects the entire food product chain

MICROBES OF CONCERN

TYPES OF MICROBES

Mold


Yeast


Bacteria

COMMON MICROBES IN TORTILLA

Aspergillus

Rhizopus

Mucor

Neospora

Bacillus

RESISTANT MOLDS

PENICILLIUM:

- A few species are preservative resistant e.g., Penicillium roqueforti, P. paneum, P. carneum.
- P. roqueforti a sorbate resistant mold, produces
 1,3 pentadiene kerosene smell
- P. roqueforti can grow under refrigerated temperature, also called "cold weather mold"

MONASCUS:

- Heat resistant mold
- Monascus spp: e.g., Monascus ruber, M. pilosus
- Survive kill steps e.g., pasteurization, baking
- Also called "summer month mold" or ascospores

FACTORS THAT INFLUENCE SPOILAGE

Intrinsic Factors

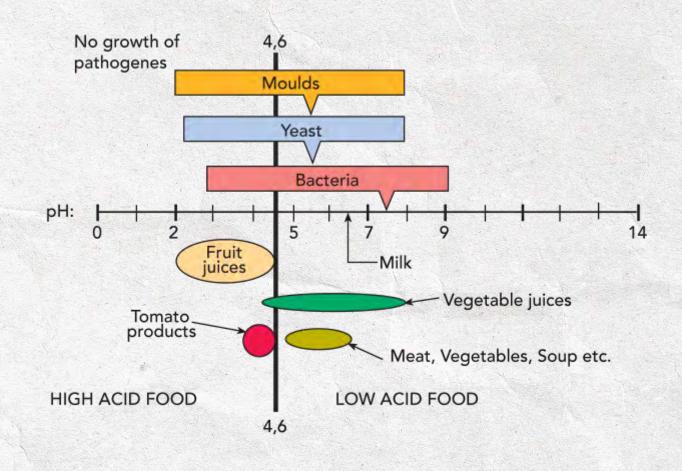
- Moisture content
- Water activity
- pH
- Nutrients

Extrinsic Factors

- Raw materials
- Processing conditions
- Cleaning/sanitation
- Packaging/storage

INTRINSIC FACTORS MOISTURE & WATER ACTIVITY (a_w)

- Moisture = total moisture
- a_w = Free water available to microbes
- Tortilla moisture = 35 50% and a_w of 0.8 to 0.97
- Lowering a_w can hinder microbial growth
- Solutes salt/sugar can reduce a_w
- Could impact sensory and texture


MODODEC	CDEOLEC	N
MICROBES	SPECIES	MINIMUM aw
Most spoilage bacteria		0.90-0.91
Bacteria	Bacillus cereus	0.92-0.95
Bacteria	Clostridium botulinum	0.90-0.98
Most molds		0.80-0.98
Mold	Aspergillus spp	0.68-0.90
Mold	Aspergillus flavus	0.78-0.90
Mold	Aspergillus niger	0.80-0.84
Mold	Fusarium spp	0.82-0.92
Mold	Mucor spp	0.80-0.93
Mold	Penicillium spp	0.78-0.93
Xerophilic molds		0.65
Spoilage yeasts		0.88
Yeast	Saccharomyces bailii	0.80
Yeast	Saccharomyces cerevisiae	0.90-0.94
Yeast	Saccharomyces rouxii	0.62
Osmophilic yeast		0.6

https://thefooduntold.com/blog/food-science/water-activity-aw-and-food-safety

NUTRIENTS, PH & OTHERS

- Excellent nutrition source
 - Carbs
 - Fat
 - Protein
 - Sugar
- pH = 4.8 12.0
- Typical storage = 70 90 °F
- Oxygen in package
- Storage time is favorable for the growth of mold

EXTRINSIC FACTORS -RAW MATERIALS

Raw Materials - Raw Agricultural Commodity

- Potential source of mold, yeast and bacteria
- Spores of resistant molds P. roqueforti, P. paneum, P. polonicum, Monascus.

Flour dust carrier for spores on equipment surface and/or processing area

- Water quality
- Wooden pallets and cardboard boxes spores to the packaging area

EXTRINSIC FACTORS -PROCESS

Baking - Temp, Time

- HRM spores (ascospores) can survive baking
- Ascospores contaminate food equipment surfaces

Cooling/Temperature Gradient

- Water condensation
- Surfaces, walls, ceiling, overhead piping
- Penicillium roqueforti can grow in colder climates

Recontamination Post Baking

EXTRINSIC FACTORS -PACKAGING & STORAGE

Packaging Materials

Vacuum packaging, MAP

Storage Conditions

• Refrigeration, frozen, ambient

EXTRINSIC FACTORS -ENVIRONMENT & CLEANING

Air Quality

- Create positive air pressure in plant
- Removal external contamination
- Filtration of incoming air HEPA filter

Cleaning and Sanitation of Equipment

Personal Hygiene

Wearing Gloves

PRESERVATION HURDLE TECHNOLOGY

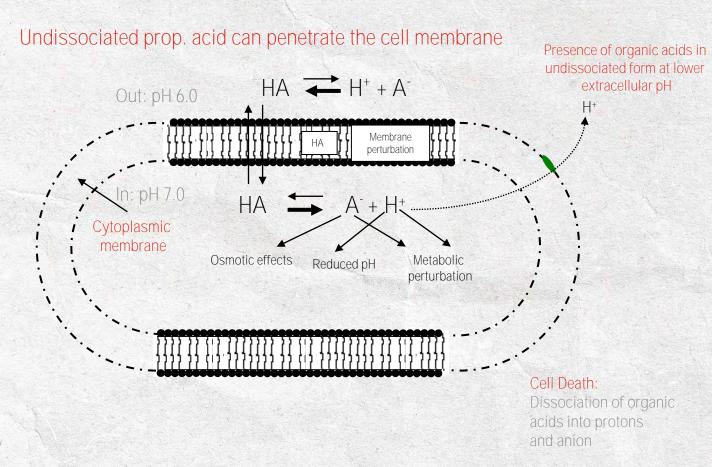
Hurdle Technology: Multiple Barriers

- Water activity (a_w)
- Thermal kill step-Baking
- Formulation-Preservatives/pH
- Innovative Packaging/MAP, Vacuum,O₂
 Scavengers
- Storage temperature (Refrigerated/Frozen)

SYNTHETIC PRESERVATIVES

Antimicrobials are extensively used to inhibit microbial spoilage in tortillas

- Propionic acid is commonly used mold inhibitor
- Sorbic acid and benzoic acid are used as helper molecules



	SPOILAGE MICROORGANISM			
Antimicrobials	Mold	Yeast	Bacteria	
Propionic acid	X		X	
Sorbic acid	X	X	X	
Acetic acid	X		X	
Benzoic acid	X	X	X	
Parabens	X		X	

PRESERVATIVES MODE OF ACTION

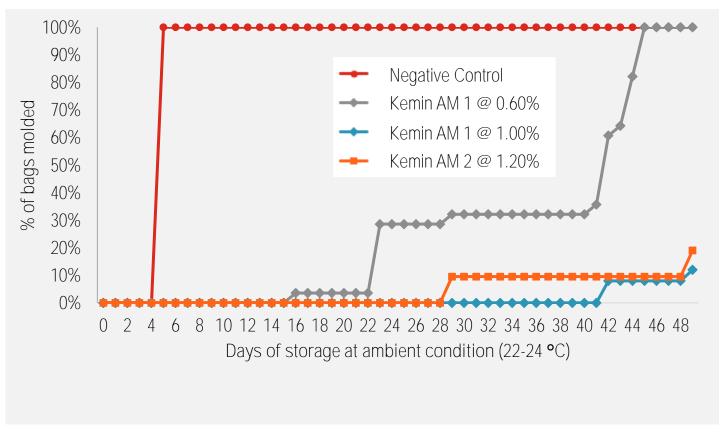
- Propionic acid
 - Undissociated acid theory/acid stress
- Sorbic acid
 - Partly due to undissociated acid
 - Loss of lipid membrane integrity
 - Inhibition of enzymes required for transportation
- Benzoic acid
 - Alter membrane fluidity disruption of membrane trafficking and dynamics

Adapted from Hirshfield et. al, 2003 Busta et. al., 1986

pH Role in Preservation

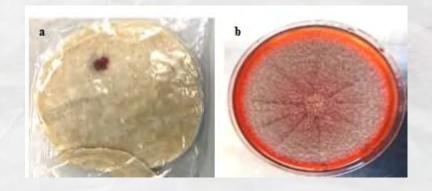
Undissociated Propionic Acid (%)	рН
99	2.87
95	3.59
90	3.92
80	4.27
70	4.50
60	4.69
50 (pK _a)	4.87
40	5.05
30	5.24
20	5.47
10	5.82
1	6.87

Acidulants


- Lower the pH of finished product
- Improve the efficiency of preservatives
- Disadvantage: affect the after taste of product

 $pK_a = pH$ when concentration of acid is equal to its conjugate base i.e., acid is 50% dissociated

EFFICACY OF SYNTHETIC ANTIMICROBIALS


- Combination of organic acid and other antimicrobials extend the shelf life
- Efficacy is based on concentration and ingredients used
- Based on the helper molecules used the efficacy can vary.

Negative control – no antimicrobial, Kemin AM 1 – synthetic liquid antimicrobial, Kemin AM 2 – synthetic liquid antimicrobial.

EFFICACY AGAINST RED MOLD (MONASCUS)

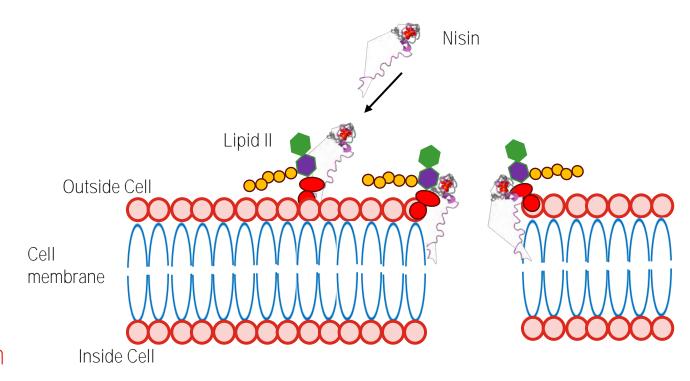
- Monascus are highly resistant to some of the organic acids
- Helper molecules (organic acids, peptides, etc.) can enhance efficacy against these red molds
- Formulation containing propionic acid along with specific helper molecules can control red mold growth during the summer months

		Growth at 45 days incubation		
Treatment groups	Dosages tested %	M. ruber	M. pilosus	M. purpureus
KEMIN AM FORMULA 1	1.00, 1.25, 1.50	No	No	No
SHIELD SPB LIQUID	1.00, 1.25, 1.50	No	No	No
KEMIN AM FORMULA 2	1.00, 1.25, 1.50	Growth at 1%	Growth at 1%	Growth at 1%
KEMIN AM FORMULA 3	1.00, 1.25, 1.50	Yes	Yes	Yes

CLEAN LABEL ANTIMICROBIALS

CLEAN LABEL ANTIMICROBIALS

- Source naturally derived
- No synthetic ingredients
- Fermented products
 - Cultured dextrose
 - Cultured wheat/whey
 - Cultured feedstock
- Essential oils
- Plant extracts herbal, berry extracts


ACTIVE INGREDIENTS - FERMENTED PRODUCTS

Typical actives include

- Short chain fatty acids
- Microbial peptides bacteriocins

Fatty acids in fermented products

- Propionic acid, acetic acid, lactic acid
- Valeric acid, butyric acid, hexanoic acid and heptanoic acid
- Mode of action of fatty acids are similar to synthetic
- Mode of action of peptides e.g., nisin
 - Inhibition of cell wall synthesis
 - Pore formation

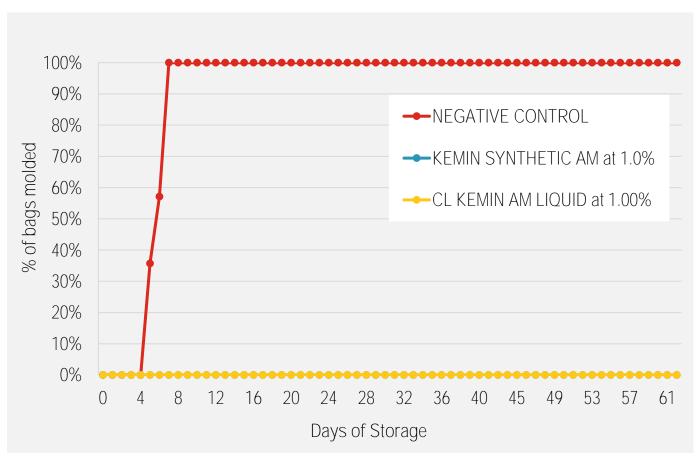
PRODUCTION OF FERMENTED PRODUCTS

- Use of microbial strains
- Fermentation of different feedstocks
- Production of organic acids and other antimicrobial compounds during the growth of the microbes
- Concentration varies
- May be dried

PRODUCTS AVAILABLE

Based on the microbe used and the process, the products available in the market can vary:

- Efficacy due to the different active molecule and active level – based on process – concentration
- Sensory based on the feedstock used and downstream process to remove impurities
- Cost/cost-in-use vary based on manufacturing cost as well as the active concentration (dosage)

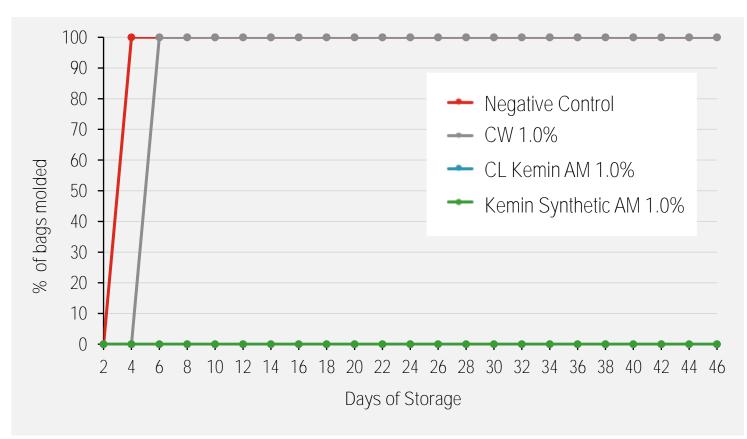


LIMITATIONS

- Typical level of actives is low ranging from 0 80%, higher dosage to be used based on the product
- Consistency due to the variability in the fermentation process if the actives are not standardized
- Impact on color due to the fermented product
- Other sugars and ingredients present in the dried causing sensory impact
- Increase cost-in-use over synthetics
- May have an impact on the texture of the finished product

EFFICACY IN CORN TORTILLAS

Negative control – no antimicrobial, Kemin synthetic AM – contains propionic acid and benzoic acid, CL Kemin AM liquid – cultured dextrose-based product

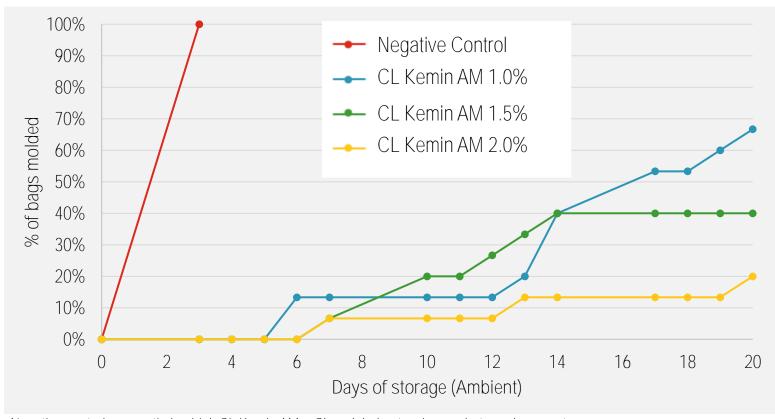

Sensory Results

Groups	Hedonic score
Kemin synthetic AM at 1.0%	7.17 ± 0.75
CL Kemin AM Liquid at 1.0%	6.50 ± 0.54

Cultured dextrose-based product was similar to synthetic product at equal concentration

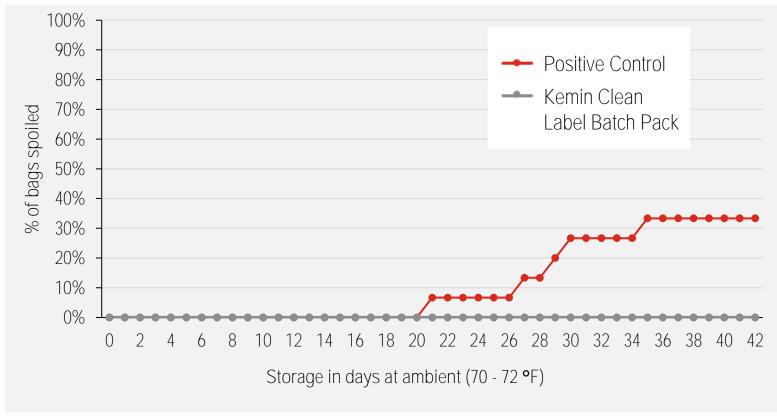
EFFICACY IN CORN TORTILLA

Negative control – no antimicrobial, CW – cultured wheat, CL Kemin AM liquid – cultured dextrose-based product, Kemin synthetic AM – contains prop & benzoic acid


Cultured wheat provided 2 more days of shelf life than negative control.

Cultured dextrose-based product was similar to synthetic product at equal concentration.

EFFICACY IN FLOUR TORTILLA



Negative control – no antimicrobial, CL Kemin AM – Clean label potassium sorbate replacement

Clean label mold inhibitor improved shelf life from 3 days to 7 days.

CLEAN LABEL BATCH PACKS - FLOUR TORTILLA

Positive control – Clean label batch pack

Clean label batch pack extended the shelf life from 21 days to more than 42 days.

CONCLUSIONS

- Clean label antimicrobials available fermented products have limitations
- The available products vary hugely on efficacy, cost and sensory impact
- Efficient products with high active content, no sensory or textural impact are available
- Appropriate selection and testing is required to choose the most suitable product for your matrix