Emulsifier functionality in tortillas TIA Valencia 22th October 2024 Cécile Buche, R&D Nutrition

NUTRITION

Outline of presentation

2

TIA Europe conference 2024

What we do

Oleon's natural chemistry is everywhere

-

The raw materials and ingredients that we produce can be found in everyday objects.

radiamuls

5

WE KNOW IT'S MORE THAN Mono & diglycerides

Reduced product stickiness

Enhanced rollability & flexibility

Improved **softness &** texture

IA Europe conference 2024

PRODUCT RANGE HUMAN NUTRITION

radiamul

Radiamuls portfolio

	EU	US
Mono- and diglycerides	Food additive E471	CFR 184.1505 = affirmed GRAS
Acetic acid esters	Food additive E472a	CFR 172.828
Lactic acid esters	Food additive E472b	CFR 172.852
Citric acid esters	Food additive E472c	GRAS (899, 511, 222)
Diacetyl tartaric acid esters	Food additive E472e	CFR 184.1101
Polyglycerol esters	Food additive E475	CFR 172.854
Polyglycerol polyricinoleate	Food additive E476	GRAS (266)
Sodium stearoyl lactylate	Food additive E481	CFR 172.846
Sorbitan esters	Food additives E491 (SMS)- E492 (STS)- E493 (SML)- E494 (SMO)	172.842 (SMS) – 173.75 (SMO) GRAS needed for STS & SML
Polysorbates	Food additives E432 (PS20)- E433 (PS80)- E435 (PS60)	CFR 172.515 (PS20) – CFR 172.836 (PS60) – CFR 172.840 (PS80)
Lecithin (std, deoiled, hydrolyzed) (rapeseed, sunflower and soy)	Food additives E322, E322i	21 CFR 184.1400 = affirmed GRAS

EU food: Regulation (EU) No 231/2012 laid down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008

US food: 21 CFR parts 170-190 lay down provision for use of food additives in foodstuffs. In the absence of a specific regulatory reference, a substance may only be used on foods if its use is generally recognised as safe (GRAS). A manufacturer may independently determine that the use of a substance is GRAS.

Challenges & emulsifier functionality

Emulsifier Usage in New Tortilla Products (2019-2024)

PERCENTAGE OF NEW TORTILLA PRODUCTS WITH EMULSIFIERS (2019-2024)

DISTRIBUTION OF EMULSIFIER TYPES IN NEW TORTILLA PRODUCTS (2019-2024)

Desired Qualities of Tortilla

tendency to stick

to one another.

uniform in shape

and size.

radian

12

quality attribute.

Major Challenges in Tortilla Manufacturing

DETERIORATION OF TEXTURE WITH TIME DUE TO STALING

Consequences of starch retrogradation:

STICKINESS OF TORTILLAS

Lower consumer acceptance

Damage caused by attempting to peel tortillas from a stack

13

Ingredients & functionalities

Corn or wheat flour + water

> As base ingredients

Fats (vegetable oils or shortening)

> Softness

> Flavor

> Flexibility

Preservatives / Salt

- Shelf-life extension by preventing mold growth and spoilage
- Taste and control fermentation

Leavening agents

- > Dough rise
- > Fluffiness
- > Chewiness

Emulsifiers

- > Dough consistency
- > Smoother texture
- > Prevent from drying and staling

Acidulants

 As pH regulator for preservation freshness

Gums & stabilizers

- > Dough elasticity
- > Water retention
- Soft texture remains over time

Enzymes

- Dough handling properties
- Shelf-life improvement (staling prevention)

Emulsifier functionality (mono-diglycerides)

- Interact with gluten during mixing to improve dough machinability
- > Interact with **starch** to reduce retrogradation
 - Extend shelf life (anti-staling)
 - o Improve softness
 - o Improve rollability

LIPOPHILIC PART OF EMULSIFIER PENETRATES INTO LIPOPHILIC HELIX OF THE AMYLOSE Starch-lipid complex formation: retarding starch crystallization and slowing the staling process

- > Improve moisture retention
- Reducing the surface energy of tortilla to reduce stickiness

Rathod, J. H. (2008). Understanding the origins of stickiness in wheat flour tortillas and devising strategies to reduce It (Doctoral dissertation, Rutgers University-Graduate School-New Brunswick).

15

Differentiating factors

Total monoglycerides

- Reaction stops at total monoglycerides ca. 45%
- Further increase by distillation until:
 - Total monoglycerides ca. 60%
 - Total monoglycerides ca. 90%
 - Total monoglycerides ca. 95%

Raw materials

- Fatty acid profile may influence functionality
- Most used raw materials:
 - Triglycerides

- Fatty acids
- Hydrogenated palm stearin
- Hydrogenated palm oil
- Palm oil

- Oleic acid
 - Stearic
 - acid

Particle size

• May influence functionality in certain bakery applications

• Typical ranges:

- Very fine powder ca. 60 µm
- Fine powder ca. 105 μm
- Powder ca. 180 μm
- Coarse powder ca. 400 μm

Iodine value

- Linked to the raw material used
- Influences the melting point

Mono- and diglycerides

radiamuls

17

Emulsifiers tested

		Total monoglycerides (%)	lodine value (gl ₂ /100g)	Particle size (µm)
Mono- and diglycerides of fatty acids - Tested at 1%	Radiamuls MG 2120K	15-25	≤4	350
	Radiamuls MG 2644K	56-60	≤2	350
	Radiamuls MG 2918K	≥90	≤2	350
	Radiamuls MG 2903K	≥93	18-26	150
	Radiamuls MG 2908K	≥90	35-45	paste

Each batch produces 15 tortillas 3 batches are repeated for each emulsifier which results in 45 tortillas

Recipe -Application test

radiam

Ingredient	Control %	With emulsifier %
All-purpose flour	100	100
Water	49	49
Glycerin	4	4
Sunflower oil	10	10
Salt	1.25	1.25
Sugar	3	3
Sodium bicarbonate	0.9	0.9
Sodium Acid Pyrophosphate (SAPP)	1.3	1.3
Preservative (calcium propionate)	0.38	0.38
Preservative (potassium sorbate)	0.3	0.3
Emulsifier		1
TOTAL	170.1	171.1

Protocol -Application test

 \rightarrow

PRODUCTION PROCESS

1	Dry mixing	30 sec at speed 1	
2	Add water at 35°C	during 2 min at an and 1	
3	Add oil	uurung z mur ut speed T	
4	Mix dough	4 min at speed 2	
5	Rest dough	10 min at room temperature	
6	Divide dough into 40g balls & let it rest	10 min	
8	Pressing	5 sec at 80°C	
9	Bake in pan	surface A 20 sec → surface B 30 sec → surface A 10 sec → surface B 10 sec	
10	Cool before packing in plastic bags	5 min	

Application Testing

Physical properties

• Weight

Diameter

Stacking stickiness (vacuum packaging)

Rate the stickiness when separate the tortillas from each other

- 1 = stick together cause tearing
- 5 = can be separated easily

Rupture strength & extensibility

- Rupture strength (N): maximum force (peak) needed to break the sample
- Extensibility (mm): displacement reached at peak force (distance until rupture)

Rollability

Evaluate the cracking and breaking of both sides of the tortillas on a scale of 1 to 5

- 1 = unrollable, breaks easily.
- 5 = no cracking, very flexible

22

Diameter

- All emulsifiers tested show significant increase of diameter with circa 1 cm
- No significative difference between all references regarding mono-content or saturation

Rupture strength

- Dotted lines indicate the market reference
- Unsaturated monoglycerides (2903K and 2908K) resulted in overall lower rupture strength

Rupture strength

IMPACT OF MONOGLYCERIDES CONTENT

- Low rupture strength = softer texture
- Low monoglycerides content resulted in lower rupture strength on day 1 (2644K) and on days 7 & 14 (2120K)

Rupture strength

IMPACT OF UNSATURATION

- Low rupture strength = softer texture
- Unsaturated monoglycerides (2903K and 2908K) resulted in overall lower rupture strength

Extensibility

- Main decrease during day 1 to day 7. Stable during day 7 to day 14.
- Unsaturated monoglycerides (2903K and 2908K) resulted overall in higher extensibility, with 2903K performing the best.

Extensibility

IMPACT OF MONOGLYCERIDES CONTENT

• Higher extensibility = more stretchable

- 2644K resulted in lower extensibility on days 1 and 7 ; 2120K results in larger extensibility at day 7
- variations in monoglyceride-content do not significantly impact average extensibility

Extensibility

IMPACT OF UNSATURATION

- Higher extensibility = more stretchable
- Unsaturated monoglycerides (2903K and 2908K) led to greater extensibility, with 2903K having the highest

Rollability

- Distilled monoglycerides (>90% monoglycerides, 2918K, 2903K and 2908K) score higher on rollability
 - With 2908K having overall best rollability

Rollability

IMPACT OF MONOGLYCERIDES CONTENT

- Distilled monoglycerides (>90% monoglycerides) score higher on rollability
- With the 2918K having the highest

Rollability

IMPACT OF UNSATURATION

- Unsaturated monoglycerides score higher on rollability
- With the 2908K having the highest

Stacking stickiness

- Saturated monoglycerides (2918K, 2120K and 2644K) reduce stacking stickiness
- Higher diglycerides (2120K & 2644K) score better

Anti-Stickiness

IMPACT OF MONOGLYCERIDES CONTENT

Anti-Stickiness

IMPACT OF UNSATURATION

Conclusion

Conclusion

Scoring code	+	Higher value than blank	+ > 0 to 0.6
	-	Lower value than blank	+ + + > 1.3

	Diameter	Rupture strength	Extensibility	Rollability	Stacking stickiness
2918K (90%, IV<2)	++		1 A A	++	+
<mark>2644K</mark> (60%, IV<2)	++			++	+
2120K (20%, IV<2)	++	-	and the second	+	+
2903K (90%, IV=18-26)	++		++	++	-
2908K (90%, IV=35-45)	++			+++	-

Diameter: + bigger diameter Rupture strength: - softer Extensibility: + more stretchable Rollability: + more flexible to roll Anti-stickiness: + improved anti-stick / - worse antistick

37

Hypothesis

Unsaturated monoglycerides

- superior dispersion properties in dough \rightarrow softer texture
- = lower rupture strength
- More loosely packed arrangement may contribute to softer and more pliable texture
- = improved rollability
- Saturated monoglycerides
 - May lead to a firmer tortilla and less prone to stickiness
 - = higher rupture strength + reduced anti-stickiness

Monoglycerides versus diglycerides

- Diglycerides more hydrophobic
- Interact stronger with fat phase → limit migration/mobility of water
- = reduced anti-stickiness

Tortilla

Chemical name	Product name	Indicative dosage
Mono- and diglycerides	RADIAMULS MG 2120K, 2644K, 2918K, 2903K, 2908K.	0.5-2.0%

Emulsifier functionality

- Shelf-life extension
- Improved softness
- Improved rollability
- Reduced stickiness

Thank you !

OLEON Nutrition Team

